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ABSTRACT

This study explores the feasibility of predicting subdaily variations and the climatological spatial patterns of

rain in the tropical Pacific from atmospheric profiles using a set of generalized linear models: logistic re-

gression for rain occurrence and gamma regression for rain amount. The prediction is separated into different

rain types fromTRMM satellite radar observations (stratiform, deep convective, and shallow convective) and

CAM5 simulations (large-scale and convective). Environmental variables from MERRA-2 and CAM5 are

used as predictors for TRMM and CAM5 rainfall, respectively. The statistical models are trained using en-

vironmental fields at 0000 UTC and rainfall from 0000 to 0600 UTC during 2003. The results are used to

predict 2004 rain occurrence and rate for MERRA-2/TRMM and CAM5 separately. The first EOF profile of

humidity and the second EOF profile of temperature contribute most to the prediction for both statistical

models in each case. The logistic regression generally performs well for all rain types, but does better in the

east Pacific compared to the west Pacific. The gamma regression produces reasonable geographical rain

amount distributions but rain rate probability distributions are not predicted as well, suggesting the need for a

different, higher-order model to predict rain rates. The results of this study suggest that statistical models

applied to TRMM radar observations and MERRA-2 environmental parameters can predict the spatial

patterns and amplitudes of tropical rainfall in the time-averaged sense. Comparing the observationally trained

models to models that are trained using CAM5 simulations points to possible deficiencies in the convection

parameterization used in CAM5.

1. Introduction

One of the strongest El Niño events in recent decades

occurred in the Pacific Ocean in 2015. Although it was

expected to bring sufficient amount of rain to ease the

California drought, California remained significantly

dry. Prediction of the remote influence of El Niño relies

crucially upon an accurate prediction of rainfall patterns

in the tropical Pacific region. However, climate model

simulations of rainfall and sea surface temperature

(SST) in this region suffer from pervasive biases. The

most notable biases are the excessive equatorial Pacific

cold tongue and the associated double intertropical

convergence zone (ITCZ; Li and Xie 2014; Oueslati and

Bellon 2015). These biases are present in the state-of-

the-art climate models that are part of the most recent

phase (phase 5) of the Climate Model Intercomparison

Project (CMIP5; Taylor et al. 2012), and there seems to

be little improvement in these biases between CMIP5

and its previous phase, CMIP3 (Stocker et al. 2013). An

accurate understanding of tropical rainfall is critical, as

it is not just a matter of predicting local rainfall but also

entails the forcing of atmospheric circulation around the

globe (Hartmann et al. 1984; Schumacher et al. 2004)

and the sensitivity to anthropogenic climate change

(Sherwood et al. 2014).

Since 1998, high-quality measurements of rainfall

over the tropics have become available via the NASA

Tropical Rainfall Measurement Mission (TRMM;

Kummerow et al. 1998) and Global Precipitation Mea-

surement (GPM; Hou et al. 2014) satellites with the

GPM satellite extending the dataset into higher latitudes

since 2014. These high-quality datasets have improved

our understanding of rainfall characteristics around theCorresponding author: Junho Yang, junhoyang@stat.tamu.edu
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globe and have been used to improve global climate

model (GCM) simulations of rainfall. Themost common

approach to using these data for model validation is to

compare the statistical properties of rainfall such as

temporal means and variances, as well as the probability

distribution functions of rainfall frequency and intensity,

between GCMs and observations (Dai 2006). Temporal

correlation properties of rainfall are also sometimes

validated, but typically on daily or longer time scales,

such as the rainfall anomalies associated with equatorial

waves (e.g., Cho et al. 2004) or El Niño–Southern Os-

cillation (ENSO; e.g., Chen et al. 2007). However, sat-

ellite rainfall measurements contain spatiotemporal

correlation information on subdiurnal time scales that

can be analyzed to validate and improve GCM simula-

tions of rainfall. Chen et al. (2017) analyzed observed

statistical relationships between atmospheric state vari-

ables and large precipitating system to identify important

predictors. In this study, we present an analysis of

TRMM satellite observations and climate model output

at subdiurnal time scales in the tropical Pacific using

flexible statistical models. The goal is to identify purely

empirical relationships between different types of rain

and the instantaneous state of atmospheric variables

such as temperature and humidity. These empirical re-

lationships are evaluated for their skill in predicting the

subdiurnal weather variations as well as the time-

averaged spatial variance of precipitation climatology.

This empirical approach is also used to evaluate the

convective parameterization in a GCM.

Our observationally based analysis is complementary

to studies that have used empirical approaches to de-

velop parameterizations of subgrid processes. Kuang

(2010) andKelly et al. (2017) described the development

and use of a tangent linear model for parameterizing

convection using data from a cloud system resolving

model. Machine learning approaches are also being in-

creasingly used to construct fast parameterizations with

training data obtained from cloud-resolving model

simulations (e.g., Krasnopolsky et al. 2013; Brenowitz

and Bretherton 2018; O’Gorman and Dwyer 2018; Rasp

et al. 2018). Climate models parameterize convection by

assuming a physically motivated predictive relationship

between the resolved atmospheric state and rainfall

amounts. Our statistical analysis attempts to mimic the

behavior of such a convection parameterization, in that

we identify a statistical predictive relationship between

the atmospheric state and the subsequent occurrence/

amount of different types of rainfall. However, our goal

is not to forecast individual rainfall events as in a

weather model, but rather to simulate the slowly varying

patterns and intensity of rainfall, as in a climate model.

Themost important predictors of rainfall are the vertical

profiles of temperature and humidity, but additional

variables such as the wind field and the associated shear

or convergence can also play a role. In a GCM, a snap-

shot of the atmospheric state at each time step is used

to predict rainfall occurring through the next time step.

We apply this predictive framework to analyze the em-

pirical relationships between the atmospheric state in

reanalysis data from the Modern-Era Retrospective

Analysis for Research and Applications, version 2

(MERRA-2), at a selected time and satellite measure-

ments of rainfall over a 6-h period after that time. The

empirical analysis is then repeated for a GCM simula-

tion using the NCAR Community Atmospheric Model

(CAM5), and the results are compared to the observed

relationships.

The predictors for rainfall are derived from surface

variables and vertical profiles of the observed atmo-

spheric state at each location from MERRA-2, with

empirical orthogonal function (EOF) decomposition

applied to vertical profiles to select the dominant ver-

tical structures of temperature, humidity, and winds.

These predictors are used to predict TRMM observed

rainfall occurrence and amount separately; the former

is a discrete on–off relationship and the latter is a

continuous relationship. We use so-called generalized

linear models (GLMs; McCullagh and Nelder 1989;

Madsen and Thyregod 2010), which can describe the

relationship between rainfall and other atmospheric

state variables accounting for their non-Gaussian

characteristics. In particular, we fit logistic regression

models for the occurrence of rain and gamma re-

gression with log link functions for the actual

rain amount.

The predictive relationships for rainfall are expected

to vary with rain type. Therefore, the analysis is carried

out independently for three types of observed rainfall,

namely stratiform (STR), deep convective (DC), and

shallow convective (SC), derived from radar measure-

ments onboard the TRMM satellite. For the climate

model analysis, only two rain types are used as pre-

dictands, large-scale and convective, due to the lack of

separate data availability for different convective rain

types from GCM data.

Deep convection is associated with strong, in-

termittent rain and constitutes a large portion of rainfall

over tropical land and oceans (Schumacher and Houze

2003) and the extratropical storm tracks. Stratiform

clouds are associated with weaker, widespread rainfall

that can form either as a result of deep convective

clouds, as is common in the tropics, or from large-scale

lifting as found in fronts at higher latitudes (Houze

2004).Moreover, the determination of rain type can also

help explain extreme rain events. For example, Ahmed
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and Schumacher (2015) showed that the exponential

increase in rainfall with tropospheric humidity over

tropical oceans [originally pointed out by Bretherton

et al. (2004)] is due mostly to the increase in stratiform

rain area. Deep convective and stratiform conditional

rain rates (i.e., rain intensity) increase in a more linear

fashion, and while convective rain area also shows an

exponential increase, it is much less dramatic than the

stratiform rain area increase.

Climate models strongly vary in the amount of rain

that they consider large-scale and convective (Dai 2006).

It should be noted that large-scale rain from the climate

models is not necessarily analogous to stratiform rain

observed by radar. Regardless, it is of high relevance to

understanding the fundamental parameterizability of

each rain type.

The rest of the paper is organized as follows: In section

2, we describe the dataset used in our analysis and the

predictor mode decomposition. In section 3, we in-

troduce the statistical model for our analysis, and section

4 gives the results. We conclude with a summary and

further discussion in section 5.

2. Data

We restrict our domain of interest to two tropical

oceanic regions, the west Pacific (WP; 158S–158N,

130.258E–1808) and the east Pacific (EP; 158S–158N,

1808–100.258W), as depicted in Fig. 1. These two regions

were chosen because they represent distinctly different

environments where deep convection forms: the WP

warm pool is a large area of warm SSTs and a moist

troposphere where deep convective systems with large

stratiform rain regions form year round. The EP is a

more marginal environment for deep convection be-

cause of the strong equatorial cold tongue and a drier

troposphere, and deep convective systems only form at

the convergence of the trade winds in the ITCZ. These

two regions also represent the upward and downward

branches of the Pacific Walker circulation, respectively,

which becomes disrupted during El Niño.
We consider two consecutive years for analysis, 2003

and 2004. Data from 2003 are used to fit the statistical

models and then we independently predict rainfall for

2004 using the statistical model. There were no strong

El Niño events during these two years, and we ex-

pect to observe similar weather patterns from 2003

to 2004 in each region. Future work will examine

how the statistical models perform during strong

ENSO events.

a. Rainfall data

The TRMM Precipitation Radar (PR) provides the

first-ever spaceborne weather radar observations over

the tropics and subtropics (from 358S to 358N) from late

1997 until mid-2014. We use V7 rain type information

from the 2A23 product (Awaka et al. 1997; Funk et al.

2013) and V7 rain rates from the 2A25 product (Iguchi

et al. 2000). Adjustments to the standard products were

made according to Funk et al. (2013) to classify all

shallow, isolated and shallow, nonisolated rain as

convective.

The PR orbital observations were binned into 6-

hourly, 0.58 grids for 2003 and 2004. The 6-hourly ac-

cumulated rainfall is expressed as a rainfall rate in units

of millimeters per day. We chose this time and space

resolution to ensure reasonable rain sampling from the

PR’s intermittent swath. When there are no PR swaths

through a particular 0.58 grid during the 6-h period, that

data point is assigned a missing value and is not used in

the statistical model. Table 1 shows the percentage

contributions of each TRMMPR rain type in 2003. Both

regions have 44% stratiform rain fraction while the EP

has a higher fraction of shallow rain (18% vs 11%). The

relative contributions of different rain types to the

overall rain amount impact the structure of heating in

both regions. Another TRMM product, 3B42 (V7;

Huffman et al. 2007, 2010), includes TRMM-adjusted

FIG. 1. Mean annual total precipitation (mmday21) in 2003 from TRMM PR data.
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merged-infrared (IR) precipitation and was also binned

into 6-hourly, 0.58 grids for the two years of interest.

We also consider the climate model output from the

NCAR Community Earth System Model (CESM)

(Hurrell et al. 2013). We focus on uncoupled in-

tegrations using the atmospheric component, the Com-

munity Atmospheric Model, version 5 (CAM5; Neale

et al. 2013), which provides 0.98 3 1.258 horizontal grid
resolution with 26 levels of vertical resolution. Hourly

large-scale (PRECL) and convective (PRECC) pre-

cipitation rates are aggregated into 6-hourly rain rates.

Convective rain comes from the CAM5 convective pa-

rameterization while the large-scale rain is produced

explicitly from grid-scale variables. While large-scale

rain from GCMs may mimic some aspects of stratiform

rain observed by radar (such as its geographical distri-

bution or elevated heating), it is not formed by the same

physical processes so only loose comparisons can be

made between the CAM5 large-scale rain and TRMM

PR stratiform rain observations.

b. Atmospheric state variables

MERRA-2 environmental variables are matched to

the TRMM PR and 3B42 gridded datasets. MERRA-2

is a NASA reanalysis dataset that assimilates in situ and

remotely sensed data using the GEOS-5 model from

1980 onward (Rienecker et al. 2011). This dataset

provides 3-hourly data at 2/38 3 1/28 horizontal grid

resolution, which was interpolated using bilinear in-

terpolation method to match the 6-hourly, 0.58 reso-

lution of the TRMM data. MERRA-2 data for

temperature, humidity, and wind vectors at 40 different

pressure levels, and latent heat flux are used in our

analysis.

c. Common grid analysis

Temporal correlation is also considered in our anal-

ysis. This analysis is carried out between snapshots of the

atmospheric state at a reference time; that is, we choose

0000 UTC for the reference time, and accumulated

rainfall during the following 6h (i.e., from 0000 to

0600UTC; expressed in units of mmday21). This mimics

the lagged predictive relationship assumed in GCM

parameterizations of rainfall, where the current atmo-

spheric state is used to predict rainfall through the next

model time step. The implicit ‘‘time step’’ of 6 h in our

analysis is much longer than actual model time steps, but

data availability limits the length of our analysis time

step. Because there is generally a very weak diurnal

cycle of precipitation over the tropical oceans, we only

consider analysis from 0000 to 0600 UTC. A similar

analysis over land would need to incorporate the full

diurnal cycle because of the stronger diurnal variability.

All the grid points in a selected region (EP orWP) and

all days of the year are lumped together for the purposes

of the statistical analysis. This is in keeping with our goal

of mimicking the convection parameterization in a cli-

mate model, which cares only about vertical profiles at a

grid point, and not about its horizontal location or the

time of the year. For the smaller WP region, there are

6000 grid points on the 0.58 latitude/longitude grid, each
with 365 vertical profiles at time 0000 UTC for the year.

This means the 2003 TRMM training data size for fitting

the statistical models is 2.19 million vertical profiles for

theWP region and 3.5million vertical profiles for the EP

region. (For CAM5, the model horizontal grid scale is

about 18 and the training data size is, therefore, one-

fourth the observed data size.)

We assessed three predictor scenarios to predict ac-

cumulated rainfall between 0000 and 0600 UTC:

Type A: Use the atmospheric state observed at a

single grid point at 0000 UTC.

Type B: Use the atmospheric state at a single grid

point as well as at four neighboring grid points at

0000 UTC.

Type C: Use the atmospheric state at a single grid

point at 0000 UTC and at four neighboring grid

points at time 1800 UTC on the previous day (i.e.,

6 h earlier).

We not only use predictors at the same grid point and

time of the rainfall but also consider predictor values at

neighboring points of the rainfall location, at either the

same time or the previous 6-h period. The rationale

behind this is that rainfall may not be solely affected by

the atmospheric state variables at the same location and

the same time point, but may be influenced by atmo-

spheric states nearby in space or before in time due to

flow advection or wave propagation.

d. Predictor mode decomposition

The atmospheric state variables considered in this study

are vertical profiles of temperature T, humidity q, and

zonal u and meridional y wind, along with scalar values of

latent heat flux (LH), latitude f, and wind shear variables.

If ux and yx denote zonal and meridional wind speed at

xhPa, we define shear variables in the following way: low-

level shear LS5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u900 2 u700)

2 1 (y900 2 y700)
2

q
, deep

TABLE 1. Percent contribution of each rain type to the total rainfall

as observed by the TRMM PR in the EP and WP.

Rain type East Pacific West Pacific

Stratiform 43.7 44.5

Deep convective 38.5 44.2

Shallow convective 17.7 11.3
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shear DS5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u900 2 u300)

2 1 (y900 2 y300)
2

q
, and deep

direct shear DDS5 (u300 2 u800). DS and DDS were

investigated to see if different aspects of deep shear

might be able to help predict stratiform rain as suggested

by Li and Schumacher (2011). To reduce the number of

variables, we carry out EOF decomposition (Hannachi

et al. 2007) in the vertical dimension for the 40 vertical

levels. We lump together vertical profiles for all times

and all horizontal locations in each region to compute

the EOFs, and use the first three dominant modes (out

of the 40 EOFs) as our predictors. As the sign of an EOF

is arbitrary, we simply choose it so that the largest ab-

solute value appears positive when displaying it.

Figure 2 shows the first three EOFs of T, q, u, and y for

2003 over the EP and WP regions from MERRA-2, and

Table 2 shows the percentage of the variance explained

by each EOF. Cumulatively, the first three EOFs explain

70%–90% of the variance in all cases. The EOFs of T

(Fig. 2, top-left panel) show both barotropic (i.e., single

sign with height) and baroclinic (i.e., changing sign with

height) structure. The first EOF of T from MERRA-2,

explaining about 40% of the variance, has the same sign

through the depth of the troposphere with a maximum

near 850hPa. The second EOF explains about 20% of the

variance and changes sign around 800hPa, with warmer

temperatures at lower levels and broad upper-level cooling

in its positive phase. The third EOF explains about 10%of

the variance and has a notable inversion around 850hPa.

EOFs of q (Fig. 2, top-right panel) also show baro-

tropic and baroclinic structures, but with a decreasing

FIG. 2. First three EOFs of temperature, humidity, and zonal and meridional winds for the EP and WP from

MERRA-2.
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signal at upper levels as would be expected because of

the low amounts of moisture in the upper troposphere.

The first EOF is particularly dominant, explaining about

70% of the variance, and indicates a very moist tropo-

sphere in its positive phase. This eigenmode bears some

similarity to the vertical structure of the slowest decay-

ing eigenmode in the linear response model of Kuang

(2010), although the corresponding temperature eigen-

modes are not similar. The second and the third EOFs

each explain less than 10% of the variance and show

peaks in humidity at low to midlevels and dry upper

levels in the positive phase.

While the EOFs of T and q are remarkably similar

between the EP and WP, there is greater variability

difference between regions in the EOFs of u and y

(Fig. 2, bottom panels). In addition, the EOF profiles of

wind are dominated by upper-level variations, as would

be expected for wind profiles because of the stronger

winds in the upper troposphere, and exhibit greater

differences between the EP and WP.

The CAM5 EOFs of T (Fig. 3 and Table 2) are quali-

tatively similar to the MERRA-2 EOFs, with a more

‘‘smeared out’’ vertical structure. The exception is the

third CAMEOFofT in the EP, which hasmore structure

in the midtroposphere compared to the third MERRA-2

EOF. The CAM5EOFs of q show considerable similarity

to all threeMERRA-2 EOFs. The first two CAM5EOFs

of u and y are similar to the corresponding MERRA-2

EOFs, but the third EOF shows some differences. Thus,

using EOFs to simplify the atmospheric variables for our

rain predictions appears warranted across platforms and

MERRA-2 and CAM5 have similar variability in vertical

profiles of T, q, and wind.

3. Statistical methods

Our statistical model consists of two parts: logistic

regression and gamma regression. For each rain type,

logistic regression determines whether it rains or not and

the gamma regression determines how intense the rain

will be. Different models are needed because atmo-

spheric conditions conducive to rain initiation may be

different from the atmospheric conditions that help

produce large rain amounts.

a. Logistic regression

The first part determines the probability of rain

through a logistic regression, which is a common ex-

ample of a GLM that is used when the response vari-

able is binary: 0 for no rain and 1 for rain. A logit

transformation,

f (x)5 log
� x

12 x

�
, 0# x# 1,

of the probability of rain is expressed as a linear com-

bination of relevant predictors (in our case, tempera-

ture, humidity, and others, as described in section 2b).

That is, if p(s) denotes the probability of rain at a grid

point s, we write

log

�
p(s)

12 p(s)

�
5b

0
1b

1
X

1
(s)1 � � � 1b

p
X

p
(s) ,

where Xi(s) denotes predictors at the grid point s.

We fit the logistic regression model for each rain type

separately using data from 2003. When we predict if

there is rain or no rain at a given grid point for 2004, we

specify a cutoff probability pc that is allowed to be dif-

ferent for each rain type. That is, if p̂(s) is the predicted

probability of rain for 2004 at a grid point s, we predict

rain only over those locations where p̂(s)$ pc.

b. Gamma regression

The second part of the model predicts the amount of

rain under theGLMframeworkwith a gammadistribution

TABLE 2. Percentage of the variance explained by the first three EOFs of T, q, u, and y over the EP and WP regions from each model

(MERRA-2 and CAM5). Values in the parentheses are the cumulative percentage variability explained by each EOF.

Variable Mode MERRA-2 EP MERRA-2 WP CAM5 EP CAM5 WP

T First 45.0 (45.0) 41.9 (41.9) 50.2 (50.2) 59.7 (59.7)

Second 17.3 (62.3) 21.4 (63.3) 17.0 (67.2) 16.1 (75.8)

Third 9.4 (71.7) 11.3 (74.6) 9.6 (76.8) 6.5 (82.3)

q First 72.0 (72.0) 69.7 (69.7) 68.3 (68.3) 74.5 (74.5)

Second 9.0 (81.0) 9.3 (79.0) 12.3 (80.5) 9.4 (83.8)

Third 6.4 (87.4) 6.9 (86.0) 7.7 (88.2) 7.2 (91.1)

u First 59.9 (59.9) 45.5 (45.5) 40.8 (40.8) 45.3 (45.3)

Second 21.4 (91.3) 38.2 (83.7) 40.4 (81.2) 33.7 (79.0)

Third 7.5 (88.8) 6.7 (90.4) 9.0 (90.1) 9.2 (88.1)

y First 46.5 (46.5) 39.2 (39.2) 37.0 (37.0) 38.2 (38.2)

Second 18.3 (64.8) 27.8 (67.0) 30.5 (67.5) 29.8 (68.0)

Third 12.9 (77.7) 12.0 (79.0) 13.4 (80.8) 13.4 (81.4)
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and a log link function. The gamma distribution only

takes a positive value, and has positive skewness, which is

useful for describing precipitation amounts (Wilks 1995;

Husak et al. 2007). SupposeY(s) is a rainfall amount over a

grid point s for a certain rain type with an expected value

E[Y(s)]5ms. Then we assume that Y follows a gamma

distributionG(as, bs), with a probability density function,

f (x)5 f1/[G(as)b
as
s ]gxas21e2x/bs , 0, x,‘. The mean ms

is given by asbs and the variance, Var[Y(s)], given by

asb
2
s . We use subscripts for the two parameters a and b to

denote that these parameter values depend on s. Then,

logm
s
5 log(a

s
b
s
)5h

0
1h

1
X

1
(s)1 � � � 1h

p
X

p
(s) .

Note that hi terms are common across all the grids and

thus do not depend on s.

c. Relative importance of predictors

One of our main interests is to quantify the impor-

tance of each atmospheric state variable in predicting

rainfall. Convective parameterizations typically usephys-

ical arguments tomotivate the choice of predictors, which

are often derived from vertical profiles of temperature

and humidity. In our analysis, we make no a priori

assumptions about the predictors, allowing the data

to dictate what is important. In the statistics literature,

Pratt (1987) and Thomas et al. (2008) proposedmethods

for quantifying the relative importance of predictors

in multivariate linear models or logistic regression

model settings. For each of the statistical models in

this study, we employ similar ideas to quantify the

relative importance of predictors; we report the scaled

FIG. 3. As in Fig. 2, but for CAM5 data.
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t statistic (or Wald statistic, which is a squared t statis-

tic). The t statistic for a particular variable is associated

with the change in the residual sum of squares after

removing this variable. The statistical programming

language R (http://www.r-project.org) is used to carry

out the analysis.

4. Results

We first discuss results for the two statistical models

(logistic and gamma regressions) applied to TRMM PR

and 3B42 data. We then apply the same statistical

analysis to CAM5 output. Last, we discuss the cases of

false negatives in the prediction. For all cases, the sta-

tistical models are fitted separately for each rain type

and the two domains, EP andWP, using data from 2003.

We then make independent predictions for 2004 using

the fitted statistical models.

a. TRMM observations

Table 3 shows prediction results using the logistic re-

gression (i.e., rain vs no rain). Each number represents

the proportion of the number of pixels that fall into each

category. The cutoff probability, described in section 3,

is chosen to yield the best prediction result for each rain

type separately. Overall, the best prediction results were

obtained when type B predictors were used (i.e., a grid

point and its four nearest neighbor points at time t), al-

though for some cases types B and C were comparable.

This suggests that the spatial dependence is an impor-

tant constraint on the model. Note that the types B and

C require the same number of predictors.

The statistical model performs best in the EP, where it

is able to predict the no-rain cases of stratiform and deep

convective rainfall from the TRMM PR well, being

correct over 90% of the time (i.e., obs 5 0, pred 5 0 vs

obs5 0, pred5 1 values in Table 3). However, it is only

able to predict the occurrence of stratiform and deep

convective rain correctly less than 50% of the time (i.e.,

obs5 1, pred5 1 vs obs5 1, pred5 0 values in Table 3).

In the WP, the predictive value for stratiform and deep

convective rain is lower than the EP for no-rain cases

(78% on average) but slightly higher for rain cases

(about 56%). The difference in predictability between

the two regions is consistent with the fact that the WP

environmental conditions are more conducive to deep

convective cloud systems and that it is easier to predict

rain versus no rain cases for stratiform and deep con-

vective rain compared to the EP, which has a more

marginal environment for deep convective clouds and

less rain occurrence overall. Shallow convective rainfall

is more ubiquitous than stratiform and deep convective

rain and occurs more often than the other two rain types.

As such, it generally has better predictability for rain

occurrence compared to the deep rain types (about

60%) but lower predictability for the no-rain situations

(about 75%).

Table 3 also shows that the prediction of rain occur-

rence from 3B42 (rain types are not separated in this

product) is similar to the PR stratiform and deep con-

vective rain predictions in the EP. The 3B42 no-rain

prediction is better than the PR in theWP, but rain cases

are not predicted as well and may be due to an un-

derestimate of rain occurrence overall by 3B42 com-

pared to the PR (i.e., 21.5% vs 25%).

When a grid point has rain, rainfall amounts are fitted

to a gamma regression model. Figures 4 and 5 show

comparisons between the observed and predicted 2004

rain amount for each PR rain type and the total 3B42

rainfall in the EP and WP, respectively. For all rain

types, predicted rain maps match the observed rain

amounts fairly well. The predicted rain field is somewhat

smoothed but the ITCZ and cold tongue are well de-

lineated in the EP (Fig. 4) and rain covers the entire WP

(Fig. 5). It is worth noting that although the statistical

model is able to predict the averaged properties of

rainfall, it performs poorly in predicting rainfall on a

day-to-day basis. This means that the statistical model

TABLE 3. Observed and predicted proportion of gridpoint rainfall occurrences based on logistic regression for the TRMM PR and 3B42

data over the east and west Pacific. Numbers in parentheses are cutoff probabilities pc used for each region and each rain type.

East Pacific West Pacific

Rain type Prediction obs 5 0 obs 5 1 obs 5 0 obs 5 1

Stratiform pred 5 0 0.811 0.065 0.625 0.121

(0.3, 0.4) pred 5 1 0.062 0.062 0.125 0.129

Deep convective pred 5 0 0.821 0.051 0.582 0.078

(0.2, 0.25) pred 5 1 0.083 0.045 0.226 0.115

Shallow convective pred 5 0 0.660 0.085 0.444 0.119

(0.3, 0.35) pred 5 1 0.136 0.120 0.243 0.194

3B42 pred 5 0 0.771 0.072 0.688 0.123

(0.3, 0.4) pred 5 1 0.078 0.079 0.097 0.092
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may bemore suitable for use in a climatemodel than in a

weather forecast model.

Figure 6 shows the observed and predicted rain

amount distributions for both TRMM PR and 3B42

datasets over the EP and WP in the original scale and

base-10 log scale. The observed distributions (solid

lines) maximize at 2mmday21 or less in both regions,

while the predicted distributions (dashed lines) have

maximum rain rates shifted right of the observed peaks.

The log-scaled plots (Fig. 6, right panels) suggest that

the observed distributions have longer tails than the

predicted distributions in both regions. The largest shift

FIG. 4. (left) TRMM observed and (right) predicted rainfall (mmday21) in the EP: (a),(b) stratiform, (c),(d) deep

convective, (e),(f) shallow convective, and (g),(h) 3B42 total rain.
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occurs in the 3B42 prediction (red dashed line), where

the peak density occurs beyond 15mmday21. The

smallest shift occurs for the shallow convective rain type

(green dashed line); however, the predicted peak is

much larger and sharper than the observed shallow

convective rain distribution. The predicted stratiform

(blue dashed line) and deep convective (orange dashed

line) distributions indicate a moderate shift to higher rain

rates compared to observations, but the deep convective

rain rates shift farther right and maintain a shape that is

closer to observations. The large density of weak strati-

form rain rates is spread out at higher rates in the pre-

diction. It is common to fit high-frequency rainfall

amounts using a gamma distribution due to their skewed

FIG. 5. As in Fig. 4, but over the WP.
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distribution (Katz 1999; Husak et al. 2007). However, as

shown in Fig. 6, there is a significant discrepancy between

distributions of the observed and predicted rain amounts

at high intensities [also discussed in Karl et al. (1995)].

We now examine the relative contributions of differ-

ent atmospheric state predictors to this skill (Fig. 7). For

stratiform and deep convective rain, the dominant con-

tributor (i.e., 25%–35%) to the predictions of both

rainfall occurrence and rainfall amount is the first EOF

of q, which is characterized by an overall moister at-

mosphere in its positive phase (Fig. 2). However, the

first EOF of q only explains 10%–15% of the shallow

convective rain amount in the gamma regression while

the second EOF of q describes 15%–20%. This differ-

ence is because the second EOF of humidity exhibits

midtropospheric drying in its positive phase, and mid-

level dryness tends to be associated with a higher like-

lihood of congestus clouds (e.g., Jensen and Del Genio

2006). The second EOF of q also describes relatively

more of the shallow convective rain occurrence com-

pared to the other rain types. The third EOF of q, rep-

resenting dry low levels in its positive phase, contributes

5%–15% to the prediction of the rain occurrence and

rain amount for all rain types.

The second EOF of T tends to be the second most

important predictor, especially for rain occurrence, and

is characterized by a baroclinic structure changing sign

around 850 hPa indicating a sharp lapse rate above the

height of the trade wind inversion. However, quite a bit

of spread of relative importance exists for this EOF

between regions and rain types. For example, this pre-

dictor is not as important in theWP compared to the EP

and while it does well at explaining EP stratiform rain

occurrence (20%), it has little to do with predicting EP

stratiform rainfall amount (although it remains impor-

tant in helping describe more than 20% of the EP deep

convective rain occurrence and amount). Another no-

table difference for this temperature EOF is that it

contributes very little to the 3B42 prediction of rain

occurrence compared to the PR. The third EOF of T,

which has a strong inversion around 800 hPa in its pos-

itive phase, contributes to about 10% to rain occurrence

predictions in both regions, but 10%–15% to rain pre-

dictions in the WP and only 5% in the EP.

Interestingly, the first EOF of T, characterized by a

barotropic vertical structure, appears to be least im-

portant among the thermodynamic (T, q) predictors.

Among the dynamic (wind related) predictors, low-level

FIG. 6. Observed (black) and predicted (gray) TRMMPR and 3B42 rain rate distributions over the (top) EP and (bottom)WP in the (left)

original scale and (right) base-10 log scale.
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shear makes the biggest contribution (about 5%–10%),

which is comparable to some thermodynamic predictors.

The surface latent heat flux also makes a reasonable

contribution, but this may not be independent of the

contribution from other thermodynamic predictors.

b. CAM5 simulations

We also fit the two statistical models to CAM5 simu-

lations. Note that we use this fit to predict the CAM5

simulated rainfall, not the TRMM observed rainfall. In

essence, we are treating the simulated rainfall and at-

mospheric state as synthetic observations that we try to

predict using a statistical model. As noted previously,

the first two CAM5 EOFs (Fig. 3) are qualitatively

similar to the MERRA-2 EOFs (Fig. 2). This indicates

that CAM5 is able to simulate the vertical structure of

the predictors fairly well. However, the temporal char-

acteristics of rainfall in the CAM5 data turn out to be

quite different. The prediction results using logistic re-

gression for CAM5 data are shown in Table 4. When

compared to the TRMM results (Table 3), the most

striking difference is the ratio of no-rain to rain cases

(i.e., CAM5 simulates rain over 80% of the time,

whereas TRMM observes rain less than 25% of the time

over the time and space scales being considered). These

numbers are consistent with previous studies that found

that climate models rain far more frequently than in

observations (e.g., Dai 2006; Stephens et al. 2010).

Our statistical model is able to predict the occurrence

of CAM5 simulated rain correctly about 80%of the time

in the EP region, but is only able to predict the no-rain

cases correctly about 40% of the time of nonraining

events (obs 5 0). This is the opposite of the predictions

using TRMM data where there was more skill in pre-

dicting the no-rain cases. The fact that the logistic model

applied to CAM5 has lower prediction skill is surprising

because TRMM observational data has measurement

errors not present in CAM5 simulations. The poorer fits

for CAM5 data suggest that the relationship between

the atmospheric state and rainfall in CAM5 may be

more nonlinear, or harder to capture with a GLM

model, as compared to observations.

TABLE 4. As in Table 3, but for CAM5 data.

East Pacific West Pacific

Rain type Prediction obs 5 0 obs 5 1 obs 5 0 obs 5 1

Large-scale pred 5 0 0.079 0.165 0.054 0.146

(0.7, 0.7) pred 5 1 0.110 0.645 0.135 0.665

Convective pred 5 0 0.129 0.181 0.070 0.183

(0.7, 0.75) pred 5 1 0.083 0.607 0.103 0.644

FIG. 7. Relative importance of predictors for (a) logistic and (b) gamma regression using TRMM PR and 3B42 data. The sum of every

variable for each rain type is set to 100.
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Figures 8 and 9 show comparisons between simulated

and predicted rain amounts from CAM5 using the

gamma regression. The simulated CAM5 rain maps

(Figs. 8 and 9, left panels) differ from the observed

TRMM maps (Figs. 4 and 5, left panels) in that the EP

rain feature south of the equator is more zonal in the

model (an indicator of the double-ITCZ problem en-

demic to climate models) and the equatorial cold tongue

that intrudes into the model WP. This comparison

illustrates an important point—the CAM5 simulation of

rain exhibits large biases as compared to observation.

Indeed, TRMM-trained statistical model predictions of

the rainfall (Figs. 4 and 5, right panels) appear more

realistic than CAM5 simulations (Figs. 8 and 9, left

panels). One caveat regarding this comparison is that we

are comparing a single year of TRMM-based prediction

to a single year of CAM5 simulation. However, gross

features such as the unrealistic double ITCZ pervasive

in many climate model simulations are not present the

TRMM-based predictions. Thus, the TRMM-based

predictions, although imperfect, could potentially per-

form better than convection parameterization in current

climate models.

The statistical model fitted to CAM5 data is able to

reproduce the spatial patterns of simulated CAM5

rainfall, but with less skill than in the case of the model

fitted to TRMM data. The predictions are better over

the EP region, although there are some artifacts in the

northeast corner. In the WP regions, the predicted spa-

tial patterns are much more diffuse and less skillful,

especially for the convective rainfall.

The different performance of the gamma regression in

the EP and WP is further highlighted by the rain rate

distribution plots in Fig. 10. The CAM5 simulated and

predicted rain distributions generally match well in the

EP, although the predicted rain distributions shift

slightly right to higher values. In the WP, the predicted

rain shifts are more dramatic, especially for PRECC

(red dashed line in Fig. 10), which has a large peak near

7mmday21 and a sharp dropoff at very high rain rates.

This peak at 7mmday21 and sharp dropoff is also seen

in the TRMMPRdeep convective rain rate prediction in

Fig. 6, so it likely results because the assumed gamma

model is not appropriate for deep convective rain.

Next, we compare the relative contribution of differ-

ent atmospheric state predictors to the prediction skill

for the simulated rain in CAM5 (Fig. 11). As in the case

of TRMM data (Fig. 7), the biggest contribution to

prediction skill comes from the first EOF of q, although

it is less dominant. The baroclinic second EOF of T,

again, appears to be the second most important pre-

dictor. Interestingly, the barotropic first EOF of T ap-

pears to make a bigger contribution in the CAM5

simulations. This suggests that the convective parame-

terization in CAM5may be more sensitive to barotropic

vertical temperature structure. Also, the contributions

FIG. 8. As in Fig. 4, but for CAM5 data over the EP, showing simulated CAM5 rainfall for (a) large-scale and

(c) convective rain and predicted CAM5 rainfall for (b) large-scale and (d) convective rain.
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from the wind-related predictors do not stand out from

the noise level. This is perhaps not surprising as con-

vective parameterizations do not explicitly use vertical

shear as predictors. Another noteworthy feature is that

latitude as a predictor makes a much stronger contri-

bution in CAM5 simulations compared to TRMM data.

This suggests that the CAM5 convective parameteriza-

tion may be more sensitive to latitude-dependent envi-

ronmental properties. When latitude is removed as a

predictor, the relative importance of the first EOF of q

increases most (not shown).

c. False negative diagnosis

To further investigate the performance of the logistic

regression model, we determined the main atmospheric

conditions that resulted in false negatives (i.e., rain is

observed but the model failed to predict rain). We

compare the kernel density estimators, a statistical

method to smooth the density function nonparametri-

cally (Silverman 1986), for true positive cases (i.e., rain is

observed and the model correctly predicts rain) and

false negative cases. That is, Fig. 12 shows comparisons

of density curves for the first EOF of q (denoted q1) and

the third EOF of T (denoted T3) as these were the EOFs

that exhibited the largest difference between the true

positive and false negative cases.

The top set of panels in Fig. 12 show that the false

negative cases (dashed lines) occur when conditions are

more humid than in the true positive cases (solid lines)

for all rain types. This is especially true for the shallow

convective rain occurrence, which has a large negative

skew toward negative q1 values for true positive cases.

The logistic regression assumes a linear relationship

between humidity and the logit transform of the prob-

ability of rain occurrence, but this relationship is likely

nonlinear as suggested by the exponential pickup of rain

amounts with column integrated humidity observed

across the tropics (Bretherton et al. 2004; Ahmed and

Schumacher 2015, 2017). A next step would be to use a

different statistical model or combination of models that

better represent this nonlinearity and non-Gaussianity.

The bottom set of panels in Fig. 12 show that the false

negative cases tend to occur when conditions are less

stable than in the true positive cases, again suggesting a

nonlinear relationship between stability and the logit

transform of the probability of rain occurrence. The

offset towardmore negativeT3 for false negative cases is

especially pronounced over the WP. Thus, there are

geographical variations in the nonlinear relationship

between the environment and rain occurrence that

should be considered in future work.

5. Conclusions

The goal of this study was to find empirical relation-

ships between the environment and rain production in

FIG. 9. As in Fig. 8, but over the WP.
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the tropical east and west Pacific at subdaily time scales

using a set of generalized linear models. The motivation

was to see if statistically derived relationships from ob-

servations may be used to improve the parameterization

of rainfall in climate models. We chose to separate the

prediction into rain occurrence and rain amount since

these are distinct processes in the atmosphere and are

treated differently in the trigger and closure assump-

tions in convective parameterizations. The logistic re-

gression was used for rain occurrence because this is an

on–off decision: either it rains or it does not. The gamma

regression was used for rain amount because it can be

FIG. 11. As in Fig. 7, but for CAM5 data.

FIG. 10. As in Fig. 6, but for CAM5 data.

1 JUNE 2019 YANG ET AL . 3423

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 04:05 PM UTC



applied to positive valued skewed distributions which

rain rates tend to have (i.e., lower rates are more com-

mon with a long tail for higher rain rates).

We also chose to separate the prediction by rain type

as not all tropical rain is created equal. Shallow con-

vection is ubiquitous across the tropical oceans, while

deep convective and stratiform rain is confined to re-

gions with high sea surface temperatures and high rain

accumulations. In addition, while deep convection can

occur in isolation, stratiform rain either forms from aged

convection or is fed by active convective towers so

cannot form in isolation. Our observations of rain came

from the TRMM PR because it can differentiate be-

tween these rain types. We also included analysis with

the total rain field fromTRMM3B42 sincemost tropical

precipitation datasets are derived from infrared satel-

lite observations that cannot easily be separated into

rain type.

GCM model precipitation was separated into two

types, large-scale rain (i.e., the rain that is determined

FIG. 12. Density plots of q1 (first EOF of humidity) and T3 (third EOF of temperature) for true positive (solid line) and false negative

(dashed line) cases from the logistic regression results using TRMM PR data.
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explicitly from grid-scale variables) and convective rain

(i.e., the rain that is determined from the convective

parameterization). Large-scale and convective rain

from a model are not the same as stratiform and con-

vective rain observed by radar, but GCMs have widely

varying rain contributions from each rain type so we

deemed it important to examine the environmental–rain

relationships for separate rain types in GCMs as well.

The main predictors were profiles of temperature,

humidity, and zonal and meridional wind from either

MERRA-2 or CAM5. The profiles were determined by

applying EOF analysis to each environmental field over

the EP and WP and the first three EOFs for each vari-

able were included in the analysis. The CAM5 profiles

were remarkably similar to the MERRA-2 profiles,

providing confidence in the robustness of the EOF

technique for data compression. Some surface variables

were used as predictors as well, but they generally were

not important to the prediction, stressing the fact that

the vertical structure of the atmosphere plays a highly

relevant role in rain production. The statistical models

were trained on 2003 data and used to predict 6-hourly

rain occurrence and rate on 0.58 grids in 2004. These

years were chosen because of the absence of a strong

ENSO event, but we plan to test the performance of the

statistical models during a strong El Niño in future work.
In the observational analysis with TRMM and

MERRA-2 data, the first EOF profile of humidity—

representing overall humid conditions throughout the

troposphere—contributed most to the prediction for

both statistical models. The second EOF of tempera-

ture—representing greater atmospheric instability—

was the second most important predictor for both sta-

tistical models although more variability existed in the

performance of this parameter between regions and rain

types. Low-level shear was the most important wind

predictor. These results appear to be consistent with the

dominant statistical predictors for large precipitating

systems identified by Chen et al. (2017), which include

total precipitable water vapor, low and midlevel hu-

midity, and low-level wind shear. The importance of q1
and T2 to the logistic regression based on CAM5 data

was similar to the TRMM and MERRA-2 analysis;

however, q1 was only of moderate importance in the

CAM5 gamma regression analysis, while T2 was more

dominant. CAM5 results also showed a large contribu-

tion from latitude not seen in the observational analysis,

and as expected from the convective parameterization,

wind predictors were unimportant.

The logistic regression on the observational data

generally performed well at predicting whether it will

rain or not, but did better in the EP compared to the

WP in minimizing false negatives and false positives.

Analysis of conditions when false negatives occur

showed that environment–rain relationships can some-

times be nonlinear and that this nonlinearity is geo-

graphically dependent, which needs to be taken into

account when applying statistical models to the pre-

diction of rain. Future analysis will also include applying

this technique to tropical land and midlatitude land and

ocean regions to create more global empirical relation-

ships. The logistic regression also performed better for

stratiform and deep convective rain than for shallow

convective rain. This is likely due to the fact that shallow

convective rain is more ubiquitous across the tropical

ocean and can occur in a wider range of environmental

conditions.

The CAM5 logistic regression had higher false nega-

tive percentages in both regions compared to the

TRMM and MERRA-2 results, but lower false positive

percentages in the WP. There was also no strong dif-

ference in performance between large-scale and con-

vective rain occurrence predictions for CAM5. It is

worth noting that it rains much more often in CAM5

than TRMM (i.e., 80% vs 10%–30% occurrence rates

per rain type, respectively). This is a well-known issue in

GCMs and may impact the performance of a chosen

statistical model, although the logistic regression as

formulated in this study still performs well for CAM5.

The gamma regression applied to the observational

data produced reasonable geographical rain amount

distributions for each rain type in each region, but rain

rate probability distributions were not predicted as well.

In particular, predicted rain rates shifted to higher me-

dian values compared to observed values suggesting the

need for a different, higher order model or combination

ofmodels (such as gamma plus extreme value) to predict

rain rate distributions more accurately. The gamma re-

gression did not perform as well on CAM5 data, espe-

cially in the WP, with predicted geographical rain

patterns much less nuanced and larger increases in

the prediction of high rain rates compared to the

original data.

Overall, the statistical models fitted to TRMM ob-

servations were able to predict the main features of the

spatial patterns and amplitudes of tropical rainfall, al-

beit in the time-averaged sense. Indeed, the TRMM-

fitted statistical model prediction of the spatial structure

of rainfall appears more realistic than the CAM5 simu-

lations using a convection parameterization in that it

avoids simulating spurious features like the double

ITCZ (Li and Xie 2014; Oueslati and Bellon 2015). This

gives us hope that with further extensions, the statistical

model may be used as a substitute for convection pa-

rameterizations. In particular, the statistical model

needs to be extended to predict not just the rainfall
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amounts, but also the vertical profile of moistening/

drying as well as diabatic heating tendencies. With this

extension, our observationally based approach can yield

an empirical parameterization for convection that

complements recent studies that use machine learning

approaches to develop convection parameterizations

trained on high-resolution model simulations (e.g.,

O’Gorman and Dwyer 2018; Rasp et al. 2018). Another

extension is to apply this methodology outside the

tropics, using the new GPM measurements that extend

into the midlatitudes. Ideally, though, the statistical

model fit should not be based on the geographical lo-

cation but on rain types, mimicking the structure of a

physically based rainfall parameterization.

One caveat on the use of empirical parameterizations is

that they implicitly assume stationarity of climate. This

means that an empirical may be suitable for simulating

interannual climate variability, but not for longer time

scales when the predictive relationships may themselves

change (e.g., see O’Gorman and Dwyer 2018). Another

caveat is that our statistical model has a predictive skill

for the slowly varying (time averaged) spatial structure of

rainfall, but not for day-to-day weather variability. Our

goal is to use the empirical parameterization to simulate

climate phenomena like El Niño, where the averaged

rainfall patterns drive the time evolution of the coupled

ocean–atmosphere system.

The predictor mode analysis identifies some inter-

esting differences between the statistical fit to TRMM

observations and the fit to CAM5 simulations. Our

results suggest that the CAM5 convection parame-

terization is more sensitive to the barotropic vertical

temperature structure and latitude compared to obser-

vations. Also, the observational fit suggests that wind

shear can contribute to predictive skill—an effect that is

not considered in model parameterizations. It is also

surprising that the statistical model exhibits greater

predictive skill when fitted to TRMM observations as

opposed to CAM5 simulations, despite that fact that

there is no measurement error to degrade prediction

skill in the CAM5 simulated data. This suggests that the

true relationship between atmospheric state and rainfall

may perhaps be more linear than is represented by the

CAM5 parameterization.

Further research is needed to extend the statistical

framework to better handle nonlinear predictive re-

lationships, and also to test the performance of these

statistical relationships in an actual climate modeling

framework (e.g., as in Brenowitz and Bretherton 2018).
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